Description
This text is rigorous, fairly traditional and is appropriate for engineering and science calculus tracks. Hallmarks are accuracy, strong engineering and science applications, deep problem sets (in quantity, depth, and range), and spectacular visuals.
Table of Contents
1 Functions, Graphs, and Models
2 Prelude to Calculus
3 The Derivative
4 Additional Applications of the Derivative
5 The Integral
6 Applications of the Integral
7 Techniques of Integration
8 Differential Equations
9 Polar Coordinates and Parametric Curves
10 Infinite Series
11 Vectors, Curves, and Surfaces in Space
12 Partial Differentiation
13 Multiple Integrals
14 Vector Calculus
C. Henry Edwards is emeritus professor of mathematics at the University of Georgia. He earned his Ph.D. at the University of Tennessee in 1960, and recently retired after 40 years of classroom teaching (including calculus or differential equations almost every term) at the universities of Tennessee, Wisconsin, and Georgia, with a brief interlude at the Institute for Advanced Study (Princeton) as an Alfred P. Sloan Research Fellow. He has received numerous teaching awards, including the University of Georgia's honoratus medal in 1983 (for sustained excellence in honors teaching), its Josiah Meigs award in 1991 (the institution's highest award for teaching), and the 1997 statewide Georgia Regents award for research university faculty teaching excellence. His scholarly career has ranged from research and dissertation direction in topology to the history of mathematics to computing and technology in the teaching and applications of mathematics. In addition to being author or co-author of calculus, advanced calculus, linear algebra, and differential equations textbooks, he is well-known to calculus instructors as author of The Historical Development of the Calculus (Springer-Verlag, 1979). During the 1990s, he served as a principal investigator on three NSF-supported projects: (1) A school mathematics project including Maple for beginning algebra students, (2) A Calculus-with-Mathematica program, and (3) A MATLAB-based computer lab project for numerical analysis and differential equations students.