Description
This well-respected text introduces the theory and application of modern numerical approximation techniques to students taking a one- or two-semester course in numerical analysis. Providing an accessible treatment that only requires a calculus prerequisite, the authors explain how, why, and when approximation techniques can be expected to work-and why, in some situations, they fail. A wealth of examples and exercises develop students' intuition, and demonstrate the subject's practical applications to important everyday problems in math, computing, engineering, and physical science disciplines. The first book of its kind when crafted more than 30 years ago to serve a diverse undergraduate audience, Burden, Faires, and Burden's NUMERICAL ANALYSIS remains the definitive introduction to a vital and practical subject.
What's New
The design of the text gives instructors flexibility in choosing topics they wish to cover, selecting the level of theoretical rigor desired, and deciding which applications are most appropriate or interesting for their classes.
The algorithms in the text are designed to work with a wide variety of software packages and programming languages, allowing maximum flexibility for users to harness computing power to perform approximations. The book's companion website offers Maple, Mathematica, and MATLAB worksheets, as well as C, FORTRAN, Java, and Pascal programs.
The exercise sets include many applied problems from diverse areas of engineering, as well as from the physical, computer, biological, and social sciences.
Virtually every concept in the text is illustrated by examples. In addition, concepts and examples are reinforced by more than 2500 class-tested exercises ranging from elementary applications of methods and algorithms to generalizations and extensions of the theory.
Table of Contents
1. MATHEMATICAL PRELIMINARIES AND ERROR ANALYSIS.
2. SOLUTIONS OF EQUATIONS IN ONE VARIABLE.
3. INTERPOLATION AND POLYNOMIAL APPROXIMATION.
4. NUMERICAL DIFFERENTIATION AND INTEGRATION.
5. INITIAL-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS.
6. DIRECT METHODS FOR SOLVING LINEAR SYSTEMS.
7. ITERATIVE TECHNIQUES IN MATRIX ALGEBRA.
8. APPROXIMATION THEORY.
9. APPROXIMATING EIGENVALUES.
10. NUMERICAL SOLUTIONS OF NONLINEAR SYSTEMS OF EQUATIONS.
11. BOUNDARY-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS.
12. NUMERICAL SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS.
Richard L. Burden is Emeritus Professor of Mathematics at Youngstown State University. His master's degree in mathematics and doctoral degree in mathematics, with a specialization in numerical analysis, were both awarded by Case Western Reserve University. He also earned a masters degree in computer science from the University of Pittsburgh. His mathematical interests include numerical analysis, numerical linear algebra, and mathematical statistics. Dr. Burden has been named a distinguished professor for teaching and service three times at Youngstown State University. He was also named a distinguished chair as the chair of the Department of Mathematical and Computer Sciences. He wrote the Actuarial Examinations in Numerical Analysis from 1990 until 1999.
J. Douglas Faires, late of Youngstown State University, pursued mathematical interests in analysis, numerical analysis, mathematics history, and problem solving. Dr. Faires won numerous awards, including the Outstanding College-University Teacher of Mathematics by the Ohio Section of MAA and five Distinguished Faculty awards from Youngstown State University, which also awarded him an Honorary Doctor of Science award in 2006.
Annette M. Burden is a Professor of Mathematics at Youngstown State University (YSU) and for four years served as YSU Interim Distance Education Director. Her master's degree in mathematics was awarded by Youngstown State University and her doctoral degree in mathematics educational technology with a specialization in numerical analysis was awarded by Union Institute & University. Dr. Burden worked under Carnegie Mellon Professor Werner C. Rheinboldt from the University of Pittsburgh for several years. She is past President of the International Society of Technology in Education's Technology Coordinators, was appointed to the MAPLE Academic Advisory Board, and served as co-chair of Ohio's Distance Education Advisory Group. She has also developed numerous upper-level online courses including courses in Numerical Analysis and Numerical Methods. Dr. Burden has been named a distinguished professor for teaching and service three times at Youngstown State University.